The pressure moments for two rigid spheres in low-Reynolds-number flow
نویسندگان
چکیده
The pressure moment of a rigid particle is defined to be the trace of the first moment of the surface stress acting on the particle. A Fax&r law for the pressure moment of one spherical particle in a general low-Reynolds-number flow is found in terms of the ambient pressure, and the pressure moments of two rigid spheres immersed in a linear ambient flow are calculated using multipole expansions and lubrication theory. The results are expressed in terms of resistance functions, following the practice established in other interaction studies. The osmotic pressure in a dilute colloidal suspension at small P&let number is then calculated, to second order in particle volume fraction, using these resistance functions. In a second application of the pressure moment, the suspension or particle-phase pressure, used in two-phase flow modeling, is calculated using Stokesian dynamics and results for the suspension pressure for a sheared cubic lattice are reported.
منابع مشابه
Resistance Functions for Two Spheres in Axisymmetric Flow - Part I: Stream Function Theory
We consider low-Reynolds-number axisymmetric flow about two spheres using a novel, biharmonic stream function. This enables us to calculate analytically not only the forces, but also the dipole moments stresslets and pressure moments and the associated resistance functions. In this paper the basics properties of axisymmetric flow and the stream function are discussed. Explicit series expansions...
متن کاملSteady Flow Through Modeled Glottal Constriction
The airflow in the modeled glottal constriction was simulated by the solutions of the Navier-Stokes equations for laminar flow, and the corresponding Reynolds equations for turbulent flow in generalized, nonorthogonal coordinates using a numerical method. A two-dimensional model of laryngeal flow is considered and aerodynamic properties are calculated for both laminar and turbulent steady flows...
متن کاملNumerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel
In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...
متن کاملPressure Calculation in the Flow Between Two Rotating Eccentric Cylinders at High Renolds Numbers
This paper reports the result of an analytical investigation of a steady, incompressible and viscous flow between two eccentric, rotating cylinders at high Reynolds number. A one dimensional case is far from reality because the gap between the cylinders is very small. Further, when their axes are displaced by a small distance, usually caused by bearing loads, two dimensional effects become obvi...
متن کاملAnalysis of Flow Pattern with Low Reynolds Number around Different Shapes of Bridge Piers, and Determination of Hydrodynamic Forces, using Open Foam Software
In many cases, a set of obstacles, such as bridge piers and abutments, are located in the river waterway. Bridge piers disrupt river’s normal flow, and the created turbulence and disturbance causes diversion of flow lines and creates rotational flow. Geometric shape and position of the piers with respect to flow direction and also number of piers and their spacing are effective on changing the ...
متن کامل